|
|
const { v4: uuidv4 } = require("uuid");const { NativeEmbedder } = require("../../EmbeddingEngines/native");const { writeResponseChunk, clientAbortedHandler,} = require("../../helpers/chat/responses");const { LLMPerformanceMonitor,} = require("../../helpers/chat/LLMPerformanceMonitor");
function perplexityModels() { const { MODELS } = require("./models.js"); return MODELS || {};}
class PerplexityLLM { constructor(embedder = null, modelPreference = null) { if (!process.env.PERPLEXITY_API_KEY) throw new Error("No Perplexity API key was set.");
const { OpenAI: OpenAIApi } = require("openai"); this.openai = new OpenAIApi({ baseURL: "https://api.perplexity.ai", apiKey: process.env.PERPLEXITY_API_KEY ?? null, }); this.model = modelPreference || process.env.PERPLEXITY_MODEL_PREF || "llama-3-sonar-large-32k-online"; // Give at least a unique model to the provider as last fallback.
this.limits = { history: this.promptWindowLimit() * 0.15, system: this.promptWindowLimit() * 0.15, user: this.promptWindowLimit() * 0.7, };
this.embedder = embedder ?? new NativeEmbedder(); this.defaultTemp = 0.7; }
#appendContext(contextTexts = []) { if (!contextTexts || !contextTexts.length) return ""; return ( "\nContext:\n" + contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); }
allModelInformation() { return perplexityModels(); }
streamingEnabled() { return "streamGetChatCompletion" in this; }
static promptWindowLimit(modelName) { const availableModels = perplexityModels(); return availableModels[modelName]?.maxLength || 4096; }
promptWindowLimit() { const availableModels = this.allModelInformation(); return availableModels[this.model]?.maxLength || 4096; }
async isValidChatCompletionModel(model = "") { const availableModels = this.allModelInformation(); return availableModels.hasOwnProperty(model); }
constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", }) { const prompt = { role: "system", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }; return [prompt, ...chatHistory, { role: "user", content: userPrompt }]; }
async getChatCompletion(messages = null, { temperature = 0.7 }) { if (!(await this.isValidChatCompletionModel(this.model))) throw new Error( `Perplexity chat: ${this.model} is not valid for chat completion!` );
const result = await LLMPerformanceMonitor.measureAsyncFunction( this.openai.chat.completions .create({ model: this.model, messages, temperature, }) .catch((e) => { throw new Error(e.message); }) );
if ( !result.output.hasOwnProperty("choices") || result.output.choices.length === 0 ) return null;
return { textResponse: result.output.choices[0].message.content, metrics: { prompt_tokens: result.output.usage?.prompt_tokens || 0, completion_tokens: result.output.usage?.completion_tokens || 0, total_tokens: result.output.usage?.total_tokens || 0, outputTps: result.output.usage?.completion_tokens / result.duration, duration: result.duration, }, }; }
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) { if (!(await this.isValidChatCompletionModel(this.model))) throw new Error( `Perplexity chat: ${this.model} is not valid for chat completion!` );
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream( this.openai.chat.completions.create({ model: this.model, stream: true, messages, temperature, }), messages ); return measuredStreamRequest; }
enrichToken(token, citations) { if (Array.isArray(citations) && citations.length !== 0) { return token.replace(/\[(\d+)\]/g, (match, index) => { const citationIndex = parseInt(index) - 1; return citations[citationIndex] ? `[[${index}](${citations[citationIndex]})]` : match; }); } return token; }
handleStream(response, stream, responseProps) { const timeoutThresholdMs = 800; const { uuid = uuidv4(), sources = [] } = responseProps; let hasUsageMetrics = false; let pplxCitations = []; // Array of links
let usage = { completion_tokens: 0, };
return new Promise(async (resolve) => { let fullText = ""; let lastChunkTime = null;
const handleAbort = () => { stream?.endMeasurement(usage); clientAbortedHandler(resolve, fullText); }; response.on("close", handleAbort);
const timeoutCheck = setInterval(() => { if (lastChunkTime === null) return;
const now = Number(new Date()); const diffMs = now - lastChunkTime; if (diffMs >= timeoutThresholdMs) { console.log( `Perplexity stream did not self-close and has been stale for >${timeoutThresholdMs}ms. Closing response stream.` ); writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); clearInterval(timeoutCheck); response.removeListener("close", handleAbort); stream?.endMeasurement(usage); resolve(fullText); } }, 500);
// Now handle the chunks from the streamed response and append to fullText.
try { for await (const chunk of stream) { lastChunkTime = Number(new Date()); const message = chunk?.choices?.[0]; const token = message?.delta?.content;
if (Array.isArray(chunk.citations) && chunk.citations.length !== 0) { pplxCitations = chunk.citations; }
// If we see usage metrics in the chunk, we can use them directly
// instead of estimating them, but we only want to assign values if
// the response object is the exact same key:value pair we expect.
if ( chunk.hasOwnProperty("usage") && // exists
!!chunk.usage && // is not null
Object.values(chunk.usage).length > 0 // has values
) { if (chunk.usage.hasOwnProperty("prompt_tokens")) { usage.prompt_tokens = Number(chunk.usage.prompt_tokens); }
if (chunk.usage.hasOwnProperty("completion_tokens")) { hasUsageMetrics = true; // to stop estimating counter
usage.completion_tokens = Number(chunk.usage.completion_tokens); } }
if (token) { let enrichedToken = this.enrichToken(token, pplxCitations); fullText += enrichedToken; if (!hasUsageMetrics) usage.completion_tokens++;
writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: enrichedToken, close: false, error: false, }); }
if (message?.finish_reason) { console.log("closing"); writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); response.removeListener("close", handleAbort); stream?.endMeasurement(usage); clearInterval(timeoutCheck); resolve(fullText); break; // Break streaming when a valid finish_reason is first encountered
} } } catch (e) { console.log(`\x1b[43m\x1b[34m[STREAMING ERROR]\x1b[0m ${e.message}`); writeResponseChunk(response, { uuid, type: "abort", textResponse: null, sources: [], close: true, error: e.message, }); stream?.endMeasurement(usage); clearInterval(timeoutCheck); resolve(fullText); // Return what we currently have - if anything.
} }); }
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); }
async compressMessages(promptArgs = {}, rawHistory = []) { const { messageArrayCompressor } = require("../../helpers/chat"); const messageArray = this.constructPrompt(promptArgs); return await messageArrayCompressor(this, messageArray, rawHistory); }}
module.exports = { PerplexityLLM, perplexityModels,};
|