You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

281 lines
11 KiB

1 month ago
  1. import os
  2. import sys
  3. import json
  4. import time
  5. from time import gmtime, strftime
  6. import argparse
  7. import datetime
  8. import torch.distributed as dist
  9. import torch
  10. import torch.nn.functional as F
  11. from torch.utils.data import DataLoader
  12. from torch.utils.data.distributed import DistributedSampler
  13. from torch.nn.parallel import DistributedDataParallel as DDP
  14. import comet_ml
  15. # Ensure project root is in path
  16. sys.path.append("../")
  17. from config import Config
  18. from dataset import QlibDataset
  19. from model.kronos import KronosTokenizer
  20. # Import shared utilities
  21. from utils.training_utils import (
  22. setup_ddp,
  23. cleanup_ddp,
  24. set_seed,
  25. get_model_size,
  26. format_time,
  27. )
  28. def create_dataloaders(config: dict, rank: int, world_size: int):
  29. """
  30. Creates and returns distributed dataloaders for training and validation.
  31. Args:
  32. config (dict): A dictionary of configuration parameters.
  33. rank (int): The global rank of the current process.
  34. world_size (int): The total number of processes.
  35. Returns:
  36. tuple: A tuple containing (train_loader, val_loader, train_dataset, valid_dataset).
  37. """
  38. print(f"[Rank {rank}] Creating distributed dataloaders...")
  39. train_dataset = QlibDataset('train')
  40. valid_dataset = QlibDataset('val')
  41. print(f"[Rank {rank}] Train dataset size: {len(train_dataset)}, Validation dataset size: {len(valid_dataset)}")
  42. train_sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=rank, shuffle=True)
  43. val_sampler = DistributedSampler(valid_dataset, num_replicas=world_size, rank=rank, shuffle=False)
  44. train_loader = DataLoader(
  45. train_dataset,
  46. batch_size=config['batch_size'],
  47. sampler=train_sampler,
  48. shuffle=False, # Shuffle is handled by the sampler
  49. num_workers=config.get('num_workers', 2),
  50. pin_memory=True,
  51. drop_last=True
  52. )
  53. val_loader = DataLoader(
  54. valid_dataset,
  55. batch_size=config['batch_size'],
  56. sampler=val_sampler,
  57. shuffle=False,
  58. num_workers=config.get('num_workers', 2),
  59. pin_memory=True,
  60. drop_last=False
  61. )
  62. print(f"[Rank {rank}] Dataloaders created. Train steps/epoch: {len(train_loader)}, Val steps: {len(val_loader)}")
  63. return train_loader, val_loader, train_dataset, valid_dataset
  64. def train_model(model, device, config, save_dir, logger, rank, world_size):
  65. """
  66. The main training and validation loop for the tokenizer.
  67. Args:
  68. model (DDP): The DDP-wrapped model to train.
  69. device (torch.device): The device for the current process.
  70. config (dict): Configuration dictionary.
  71. save_dir (str): Directory to save checkpoints.
  72. logger (comet_ml.Experiment): Comet logger instance.
  73. rank (int): Global rank of the process.
  74. world_size (int): Total number of processes.
  75. Returns:
  76. tuple: A tuple containing the trained model and a dictionary of results.
  77. """
  78. start_time = time.time()
  79. if rank == 0:
  80. effective_bs = config['batch_size'] * world_size * config['accumulation_steps']
  81. print(f"[Rank {rank}] BATCHSIZE (per GPU): {config['batch_size']}")
  82. print(f"[Rank {rank}] Effective total batch size: {effective_bs}")
  83. train_loader, val_loader, train_dataset, valid_dataset = create_dataloaders(config, rank, world_size)
  84. optimizer = torch.optim.AdamW(
  85. model.parameters(),
  86. lr=config['tokenizer_learning_rate'],
  87. weight_decay=config['adam_weight_decay']
  88. )
  89. scheduler = torch.optim.lr_scheduler.OneCycleLR(
  90. optimizer=optimizer,
  91. max_lr=config['tokenizer_learning_rate'],
  92. steps_per_epoch=len(train_loader),
  93. epochs=config['epochs'],
  94. pct_start=0.03,
  95. div_factor=10
  96. )
  97. best_val_loss = float('inf')
  98. dt_result = {}
  99. batch_idx_global_train = 0
  100. for epoch_idx in range(config['epochs']):
  101. epoch_start_time = time.time()
  102. model.train()
  103. train_loader.sampler.set_epoch(epoch_idx)
  104. # Set dataset seeds for reproducible sampling
  105. train_dataset.set_epoch_seed(epoch_idx * 10000 + rank)
  106. valid_dataset.set_epoch_seed(0) # Keep validation sampling consistent
  107. for i, (ori_batch_x, _) in enumerate(train_loader):
  108. ori_batch_x = ori_batch_x.squeeze(0).to(device, non_blocking=True)
  109. # --- Gradient Accumulation Loop ---
  110. current_batch_total_loss = 0.0
  111. for j in range(config['accumulation_steps']):
  112. start_idx = j * (ori_batch_x.shape[0] // config['accumulation_steps'])
  113. end_idx = (j + 1) * (ori_batch_x.shape[0] // config['accumulation_steps'])
  114. batch_x = ori_batch_x[start_idx:end_idx]
  115. # Forward pass
  116. zs, bsq_loss, _, _ = model(batch_x)
  117. z_pre, z = zs
  118. # Loss calculation
  119. recon_loss_pre = F.mse_loss(z_pre, batch_x)
  120. recon_loss_all = F.mse_loss(z, batch_x)
  121. recon_loss = recon_loss_pre + recon_loss_all
  122. loss = (recon_loss + bsq_loss) / 2 # Assuming w_1=w_2=1
  123. loss_scaled = loss / config['accumulation_steps']
  124. current_batch_total_loss += loss.item()
  125. loss_scaled.backward()
  126. # --- Optimizer Step after Accumulation ---
  127. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=2.0)
  128. optimizer.step()
  129. scheduler.step()
  130. optimizer.zero_grad()
  131. # --- Logging (Master Process Only) ---
  132. if rank == 0 and (batch_idx_global_train + 1) % config['log_interval'] == 0:
  133. avg_loss = current_batch_total_loss / config['accumulation_steps']
  134. print(
  135. f"[Rank {rank}, Epoch {epoch_idx + 1}/{config['epochs']}, Step {i + 1}/{len(train_loader)}] "
  136. f"LR {optimizer.param_groups[0]['lr']:.6f}, Loss: {avg_loss:.4f}"
  137. )
  138. if rank == 0 and logger:
  139. avg_loss = current_batch_total_loss / config['accumulation_steps']
  140. logger.log_metric('train_tokenizer_loss_batch', avg_loss, step=batch_idx_global_train)
  141. logger.log_metric(f'train_vqvae_vq_loss_each_batch', bsq_loss.item(), step=batch_idx_global_train)
  142. logger.log_metric(f'train_recon_loss_pre_each_batch', recon_loss_pre.item(), step=batch_idx_global_train)
  143. logger.log_metric(f'train_recon_loss_each_batch', recon_loss_all.item(), step=batch_idx_global_train)
  144. logger.log_metric('tokenizer_learning_rate', optimizer.param_groups[0]["lr"], step=batch_idx_global_train)
  145. batch_idx_global_train += 1
  146. # --- Validation Loop ---
  147. model.eval()
  148. tot_val_loss_sum_rank = 0.0
  149. val_sample_count_rank = 0
  150. with torch.no_grad():
  151. for ori_batch_x, _ in val_loader:
  152. ori_batch_x = ori_batch_x.squeeze(0).to(device, non_blocking=True)
  153. zs, _, _, _ = model(ori_batch_x)
  154. _, z = zs
  155. val_loss_item = F.mse_loss(z, ori_batch_x)
  156. tot_val_loss_sum_rank += val_loss_item.item() * ori_batch_x.size(0)
  157. val_sample_count_rank += ori_batch_x.size(0)
  158. # Reduce validation losses from all processes
  159. val_loss_sum_tensor = torch.tensor(tot_val_loss_sum_rank, device=device)
  160. val_count_tensor = torch.tensor(val_sample_count_rank, device=device)
  161. dist.all_reduce(val_loss_sum_tensor, op=dist.ReduceOp.SUM)
  162. dist.all_reduce(val_count_tensor, op=dist.ReduceOp.SUM)
  163. avg_val_loss = val_loss_sum_tensor.item() / val_count_tensor.item() if val_count_tensor.item() > 0 else 0
  164. # --- End of Epoch Summary & Checkpointing (Master Process Only) ---
  165. if rank == 0:
  166. print(f"\n--- Epoch {epoch_idx + 1}/{config['epochs']} Summary ---")
  167. print(f"Validation Loss: {avg_val_loss:.4f}")
  168. print(f"Time This Epoch: {format_time(time.time() - epoch_start_time)}")
  169. print(f"Total Time Elapsed: {format_time(time.time() - start_time)}\n")
  170. if logger:
  171. logger.log_metric('val_tokenizer_loss_epoch', avg_val_loss, epoch=epoch_idx)
  172. if avg_val_loss < best_val_loss:
  173. best_val_loss = avg_val_loss
  174. save_path = f"{save_dir}/checkpoints/best_model"
  175. model.module.save_pretrained(save_path)
  176. print(f"Best model saved to {save_path} (Val Loss: {best_val_loss:.4f})")
  177. if logger:
  178. logger.log_model("best_model", save_path)
  179. dist.barrier() # Ensure all processes finish the epoch before starting the next one.
  180. dt_result['best_val_loss'] = best_val_loss
  181. return model, dt_result
  182. def main(config: dict):
  183. """
  184. Main function to orchestrate the DDP training process.
  185. """
  186. rank, world_size, local_rank = setup_ddp()
  187. device = torch.device(f"cuda:{local_rank}")
  188. set_seed(config['seed'], rank)
  189. save_dir = os.path.join(config['save_path'], config['tokenizer_save_folder_name'])
  190. # Logger and summary setup (master process only)
  191. comet_logger, master_summary = None, {}
  192. if rank == 0:
  193. os.makedirs(os.path.join(save_dir, 'checkpoints'), exist_ok=True)
  194. master_summary = {
  195. 'start_time': strftime("%Y-%m-%dT%H-%M-%S", gmtime()),
  196. 'save_directory': save_dir,
  197. 'world_size': world_size,
  198. }
  199. if config['use_comet']:
  200. comet_logger = comet_ml.Experiment(
  201. api_key=config['comet_config']['api_key'],
  202. project_name=config['comet_config']['project_name'],
  203. workspace=config['comet_config']['workspace'],
  204. )
  205. comet_logger.add_tag(config['comet_tag'])
  206. comet_logger.set_name(config['comet_name'])
  207. comet_logger.log_parameters(config)
  208. print("Comet Logger Initialized.")
  209. dist.barrier() # Ensure save directory is created before proceeding
  210. # Model Initialization
  211. model = KronosTokenizer.from_pretrained(config['pretrained_tokenizer_path'])
  212. model.to(device)
  213. model = DDP(model, device_ids=[local_rank], find_unused_parameters=False)
  214. if rank == 0:
  215. print(f"Model Size: {get_model_size(model.module)}")
  216. # Start Training
  217. _, dt_result = train_model(
  218. model, device, config, save_dir, comet_logger, rank, world_size
  219. )
  220. # Finalize and save summary (master process only)
  221. if rank == 0:
  222. master_summary['final_result'] = dt_result
  223. with open(os.path.join(save_dir, 'summary.json'), 'w') as f:
  224. json.dump(master_summary, f, indent=4)
  225. print('Training finished. Summary file saved.')
  226. if comet_logger:
  227. comet_logger.end()
  228. cleanup_ddp()
  229. if __name__ == '__main__':
  230. # Usage: torchrun --standalone --nproc_per_node=NUM_GPUS train_tokenizer.py
  231. if "WORLD_SIZE" not in os.environ:
  232. raise RuntimeError("This script must be launched with `torchrun`.")
  233. config_instance = Config()
  234. main(config_instance.__dict__)