|
|
import osimport sysimport jsonimport timefrom time import gmtime, strftimeimport argparseimport datetimeimport torch.distributed as distimport torchimport torch.nn.functional as Ffrom torch.utils.data import DataLoaderfrom torch.utils.data.distributed import DistributedSamplerfrom torch.nn.parallel import DistributedDataParallel as DDP
import comet_ml
# Ensure project root is in pathsys.path.append("../")from config import Configfrom dataset import QlibDatasetfrom model.kronos import KronosTokenizer# Import shared utilitiesfrom utils.training_utils import ( setup_ddp, cleanup_ddp, set_seed, get_model_size, format_time,)
def create_dataloaders(config: dict, rank: int, world_size: int): """
Creates and returns distributed dataloaders for training and validation.
Args: config (dict): A dictionary of configuration parameters. rank (int): The global rank of the current process. world_size (int): The total number of processes.
Returns: tuple: A tuple containing (train_loader, val_loader, train_dataset, valid_dataset). """
print(f"[Rank {rank}] Creating distributed dataloaders...") train_dataset = QlibDataset('train') valid_dataset = QlibDataset('val') print(f"[Rank {rank}] Train dataset size: {len(train_dataset)}, Validation dataset size: {len(valid_dataset)}")
train_sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=rank, shuffle=True) val_sampler = DistributedSampler(valid_dataset, num_replicas=world_size, rank=rank, shuffle=False)
train_loader = DataLoader( train_dataset, batch_size=config['batch_size'], sampler=train_sampler, shuffle=False, # Shuffle is handled by the sampler num_workers=config.get('num_workers', 2), pin_memory=True, drop_last=True ) val_loader = DataLoader( valid_dataset, batch_size=config['batch_size'], sampler=val_sampler, shuffle=False, num_workers=config.get('num_workers', 2), pin_memory=True, drop_last=False ) print(f"[Rank {rank}] Dataloaders created. Train steps/epoch: {len(train_loader)}, Val steps: {len(val_loader)}") return train_loader, val_loader, train_dataset, valid_dataset
def train_model(model, device, config, save_dir, logger, rank, world_size): """
The main training and validation loop for the tokenizer.
Args: model (DDP): The DDP-wrapped model to train. device (torch.device): The device for the current process. config (dict): Configuration dictionary. save_dir (str): Directory to save checkpoints. logger (comet_ml.Experiment): Comet logger instance. rank (int): Global rank of the process. world_size (int): Total number of processes.
Returns: tuple: A tuple containing the trained model and a dictionary of results. """
start_time = time.time() if rank == 0: effective_bs = config['batch_size'] * world_size * config['accumulation_steps'] print(f"[Rank {rank}] BATCHSIZE (per GPU): {config['batch_size']}") print(f"[Rank {rank}] Effective total batch size: {effective_bs}")
train_loader, val_loader, train_dataset, valid_dataset = create_dataloaders(config, rank, world_size)
optimizer = torch.optim.AdamW( model.parameters(), lr=config['tokenizer_learning_rate'], weight_decay=config['adam_weight_decay'] )
scheduler = torch.optim.lr_scheduler.OneCycleLR( optimizer=optimizer, max_lr=config['tokenizer_learning_rate'], steps_per_epoch=len(train_loader), epochs=config['epochs'], pct_start=0.03, div_factor=10 )
best_val_loss = float('inf') dt_result = {} batch_idx_global_train = 0
for epoch_idx in range(config['epochs']): epoch_start_time = time.time() model.train() train_loader.sampler.set_epoch(epoch_idx)
# Set dataset seeds for reproducible sampling train_dataset.set_epoch_seed(epoch_idx * 10000 + rank) valid_dataset.set_epoch_seed(0) # Keep validation sampling consistent
for i, (ori_batch_x, _) in enumerate(train_loader): ori_batch_x = ori_batch_x.squeeze(0).to(device, non_blocking=True)
# --- Gradient Accumulation Loop --- current_batch_total_loss = 0.0 for j in range(config['accumulation_steps']): start_idx = j * (ori_batch_x.shape[0] // config['accumulation_steps']) end_idx = (j + 1) * (ori_batch_x.shape[0] // config['accumulation_steps']) batch_x = ori_batch_x[start_idx:end_idx]
# Forward pass zs, bsq_loss, _, _ = model(batch_x) z_pre, z = zs
# Loss calculation recon_loss_pre = F.mse_loss(z_pre, batch_x) recon_loss_all = F.mse_loss(z, batch_x) recon_loss = recon_loss_pre + recon_loss_all loss = (recon_loss + bsq_loss) / 2 # Assuming w_1=w_2=1
loss_scaled = loss / config['accumulation_steps'] current_batch_total_loss += loss.item() loss_scaled.backward()
# --- Optimizer Step after Accumulation --- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=2.0) optimizer.step() scheduler.step() optimizer.zero_grad()
# --- Logging (Master Process Only) --- if rank == 0 and (batch_idx_global_train + 1) % config['log_interval'] == 0: avg_loss = current_batch_total_loss / config['accumulation_steps'] print( f"[Rank {rank}, Epoch {epoch_idx + 1}/{config['epochs']}, Step {i + 1}/{len(train_loader)}] " f"LR {optimizer.param_groups[0]['lr']:.6f}, Loss: {avg_loss:.4f}" ) if rank == 0 and logger: avg_loss = current_batch_total_loss / config['accumulation_steps'] logger.log_metric('train_tokenizer_loss_batch', avg_loss, step=batch_idx_global_train) logger.log_metric(f'train_vqvae_vq_loss_each_batch', bsq_loss.item(), step=batch_idx_global_train) logger.log_metric(f'train_recon_loss_pre_each_batch', recon_loss_pre.item(), step=batch_idx_global_train) logger.log_metric(f'train_recon_loss_each_batch', recon_loss_all.item(), step=batch_idx_global_train) logger.log_metric('tokenizer_learning_rate', optimizer.param_groups[0]["lr"], step=batch_idx_global_train)
batch_idx_global_train += 1
# --- Validation Loop --- model.eval() tot_val_loss_sum_rank = 0.0 val_sample_count_rank = 0 with torch.no_grad(): for ori_batch_x, _ in val_loader: ori_batch_x = ori_batch_x.squeeze(0).to(device, non_blocking=True) zs, _, _, _ = model(ori_batch_x) _, z = zs val_loss_item = F.mse_loss(z, ori_batch_x)
tot_val_loss_sum_rank += val_loss_item.item() * ori_batch_x.size(0) val_sample_count_rank += ori_batch_x.size(0)
# Reduce validation losses from all processes val_loss_sum_tensor = torch.tensor(tot_val_loss_sum_rank, device=device) val_count_tensor = torch.tensor(val_sample_count_rank, device=device) dist.all_reduce(val_loss_sum_tensor, op=dist.ReduceOp.SUM) dist.all_reduce(val_count_tensor, op=dist.ReduceOp.SUM)
avg_val_loss = val_loss_sum_tensor.item() / val_count_tensor.item() if val_count_tensor.item() > 0 else 0
# --- End of Epoch Summary & Checkpointing (Master Process Only) --- if rank == 0: print(f"\n--- Epoch {epoch_idx + 1}/{config['epochs']} Summary ---") print(f"Validation Loss: {avg_val_loss:.4f}") print(f"Time This Epoch: {format_time(time.time() - epoch_start_time)}") print(f"Total Time Elapsed: {format_time(time.time() - start_time)}\n") if logger: logger.log_metric('val_tokenizer_loss_epoch', avg_val_loss, epoch=epoch_idx)
if avg_val_loss < best_val_loss: best_val_loss = avg_val_loss save_path = f"{save_dir}/checkpoints/best_model" model.module.save_pretrained(save_path) print(f"Best model saved to {save_path} (Val Loss: {best_val_loss:.4f})") if logger: logger.log_model("best_model", save_path)
dist.barrier() # Ensure all processes finish the epoch before starting the next one.
dt_result['best_val_loss'] = best_val_loss return model, dt_result
def main(config: dict): """
Main function to orchestrate the DDP training process. """
rank, world_size, local_rank = setup_ddp() device = torch.device(f"cuda:{local_rank}") set_seed(config['seed'], rank)
save_dir = os.path.join(config['save_path'], config['tokenizer_save_folder_name'])
# Logger and summary setup (master process only) comet_logger, master_summary = None, {} if rank == 0: os.makedirs(os.path.join(save_dir, 'checkpoints'), exist_ok=True) master_summary = { 'start_time': strftime("%Y-%m-%dT%H-%M-%S", gmtime()), 'save_directory': save_dir, 'world_size': world_size, } if config['use_comet']: comet_logger = comet_ml.Experiment( api_key=config['comet_config']['api_key'], project_name=config['comet_config']['project_name'], workspace=config['comet_config']['workspace'], ) comet_logger.add_tag(config['comet_tag']) comet_logger.set_name(config['comet_name']) comet_logger.log_parameters(config) print("Comet Logger Initialized.")
dist.barrier() # Ensure save directory is created before proceeding
# Model Initialization model = KronosTokenizer.from_pretrained(config['pretrained_tokenizer_path']) model.to(device) model = DDP(model, device_ids=[local_rank], find_unused_parameters=False)
if rank == 0: print(f"Model Size: {get_model_size(model.module)}")
# Start Training _, dt_result = train_model( model, device, config, save_dir, comet_logger, rank, world_size )
# Finalize and save summary (master process only) if rank == 0: master_summary['final_result'] = dt_result with open(os.path.join(save_dir, 'summary.json'), 'w') as f: json.dump(master_summary, f, indent=4) print('Training finished. Summary file saved.') if comet_logger: comet_logger.end()
cleanup_ddp()
if __name__ == '__main__': # Usage: torchrun --standalone --nproc_per_node=NUM_GPUS train_tokenizer.py if "WORLD_SIZE" not in os.environ: raise RuntimeError("This script must be launched with `torchrun`.")
config_instance = Config() main(config_instance.__dict__)
|