You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
#This is a template config for custom finetuning kronos on csv data
#这是一份模板config,用于kronos的csv自定义数据微调
data:
data_path: "/xxxx/Kronos/finetune_csv/data/HK_ali_09988_kline_5min_all.csv"
lookback_window: 512
predict_window: 48
max_context: 512
clip: 5.0
# dataset split ratio
train_ratio: 0.9
val_ratio: 0.1
test_ratio: 0.0
training:
# control the training epochs of tokenizer and basemodel
tokenizer_epochs: 30
basemodel_epochs: 20
batch_size: 32
log_interval: 50
num_workers: 6
seed: 42
tokenizer_learning_rate: 0.0002
predictor_learning_rate: 0.000001
adam_beta1: 0.9
adam_beta2: 0.95
adam_weight_decay: 0.1
# gradient accumulation steps for tokenizer training
accumulation_steps: 1
# model path configuration
model_paths:
# pretrained model path
pretrained_tokenizer: "/xxx/Kronos/pretrained/Kronos-Tokenizer-base"
pretrained_predictor: "/xxx/Kronos/pretrained/Kronos-base"
# experiment name - other paths will be generated based on this
exp_name: "HK_ali_09988_kline_5min_all"
base_path: "/xxx/Kronos/finetune_csv/finetuned/"
# the following paths will be generated based on exp_name, no need to modify manually
# way 1: leave empty string, the system will generate the full path
base_save_path: "" # /xxxx/Kronos/finetune_csv/finetuned/{exp_name}
finetuned_tokenizer: "" # /xxxx/Kronos/finetune_csv/finetuned/{exp_name}/tokenizer/best_model
# way 2: use template string, {exp_name} will be replaced with the actual experiment name
# base_save_path: "/xxxx/Kronos/finetune_csv/finetuned/{exp_name}"
# finetuned_tokenizer: "/xxxx/Kronos/finetune_csv/finetuned/{exp_name}/tokenizer/best_model"
tokenizer_save_name: "tokenizer"
basemodel_save_name: "basemodel"
experiment:
name: "kronos_custom_finetune"
description: "Custom finetune for HK stock data"
use_comet: false
# control the training phase
train_tokenizer: true
train_basemodel: true
# if true, skip the existing model training
skip_existing: false
# device configuration
device:
use_cuda: true
device_id: 0
|