#This is a template config for custom finetuning kronos on csv data #这是一份模板config,用于kronos的csv自定义数据微调 data: data_path: "/xxxx/Kronos/finetune_csv/data/HK_ali_09988_kline_5min_all.csv" lookback_window: 512 predict_window: 48 max_context: 512 clip: 5.0 # dataset split ratio train_ratio: 0.9 val_ratio: 0.1 test_ratio: 0.0 training: # control the training epochs of tokenizer and basemodel tokenizer_epochs: 30 basemodel_epochs: 20 batch_size: 32 log_interval: 50 num_workers: 6 seed: 42 tokenizer_learning_rate: 0.0002 predictor_learning_rate: 0.000001 adam_beta1: 0.9 adam_beta2: 0.95 adam_weight_decay: 0.1 # gradient accumulation steps for tokenizer training accumulation_steps: 1 # model path configuration model_paths: # pretrained model path pretrained_tokenizer: "/xxx/Kronos/pretrained/Kronos-Tokenizer-base" pretrained_predictor: "/xxx/Kronos/pretrained/Kronos-base" # experiment name - other paths will be generated based on this exp_name: "HK_ali_09988_kline_5min_all" base_path: "/xxx/Kronos/finetune_csv/finetuned/" # the following paths will be generated based on exp_name, no need to modify manually # way 1: leave empty string, the system will generate the full path base_save_path: "" # /xxxx/Kronos/finetune_csv/finetuned/{exp_name} finetuned_tokenizer: "" # /xxxx/Kronos/finetune_csv/finetuned/{exp_name}/tokenizer/best_model # way 2: use template string, {exp_name} will be replaced with the actual experiment name # base_save_path: "/xxxx/Kronos/finetune_csv/finetuned/{exp_name}" # finetuned_tokenizer: "/xxxx/Kronos/finetune_csv/finetuned/{exp_name}/tokenizer/best_model" tokenizer_save_name: "tokenizer" basemodel_save_name: "basemodel" experiment: name: "kronos_custom_finetune" description: "Custom finetune for HK stock data" use_comet: false # control the training phase train_tokenizer: true train_basemodel: true # if true, skip the existing model training skip_existing: false # device configuration device: use_cuda: true device_id: 0